Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Neuroendocrinology ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547853

ABSTRACT

INTRODUCTION: Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS: This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress (CUMS). RESULTS: Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION: This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.

2.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38466095

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Subject(s)
Autophagy , Birds , Metapneumovirus , Proteolysis , Sequestosome-1 Protein , Viral Proteins , Virus Replication , Animals , Humans , HEK293 Cells , Metapneumovirus/classification , Metapneumovirus/growth & development , Paramyxoviridae Infections/metabolism , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Protein Binding , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Birds/virology
3.
Front Microbiol ; 15: 1298106, 2024.
Article in English | MEDLINE | ID: mdl-38380105

ABSTRACT

Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases that pose a serious threat to the swine industry. PCV2 capsid (Cap) protein has been shown to interact with DEAD-box RNA helicase 21 (DDX21), an important protein that regulates RNA virus replication. However, whether the interaction between DDX21 and the PCV2 Cap regulates PCV2 replication remains unclear. Herein, by using western blotting, interaction assays, and knockdown analysis, we found that PCV2 infection induced the cytoplasmic relocation of DDX21 from the nucleolus in cultured PK-15 cells. Moreover, the nuclear localization signal (NLS) of PCV2 Cap interacted directly with DDX21. The NLS of PCV2 Cap and 763GSRSNRFQNK772 residues at the C-terminal domain (CTD) of DDX21 were essential for the dual interaction. Upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV2 replication via a lentivirus-delivered system, as evidenced by decreased levels of viral protein expression and virus production. In contrast, the replication of PCV2 increased in transiently DDX21-overexpressing cells. Our results indicate that DDX21 interacts with PCV2 Cap and plays a crucial role in virus replication. These results provide a reference for developing novel potential targets for prevention and control of PCV2 infection.

4.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255903

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metapneumovirus , Humans , Animals , Cats , Swine , Metapneumovirus/genetics , Integrin beta1/genetics , Chickens , Antibodies, Viral
5.
J Virol ; 97(12): e0089423, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032196

ABSTRACT

IMPORTANCE: Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes multisystem disease in pigs and poses a severe threat to the swine industry. However, the mechanisms of how PCV3 uses host proteins to regulate its own life cycle are not well understood. In this study, we found that PCV3 capsid protein interacts with nucleolin and degrades it. Degradation of nucleolin by the PCV3 capsid protein requires recruitment of the enzyme RNF34, which is transported to the nucleolus from the cytoplasm in the presence of the PCV3 capsid protein. Nucleolin also decreases PCV3 replication by promoting the release of interferon ß. These findings clarify the mechanism by which nucleolin modulates PCV3 replication in cells, thereby facilitating to provide an important strategy for preventing and controlling PCV3 infection.


Subject(s)
Capsid Proteins , Circoviridae Infections , Circovirus , Nucleolin , Swine Diseases , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Circoviridae Infections/metabolism , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circovirus/metabolism , Nucleolin/metabolism , Phylogeny , Swine , Swine Diseases/virology , Ubiquitination
6.
Microbiol Spectr ; 11(3): e0506022, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37140466

ABSTRACT

Porcine circovirus type 3 (PCV3) is a newly discovered pathogen that causes porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, multisystemic inflammation, and reproductive failure. Heme oxygenase-1 (HO-1), a stress-inducible enzyme, exerts protective functions by converting heme into carbon monoxide (CO), biliverdin (BV), and iron. However, the effects of HO-1 and its metabolites on PCV3 replication remain unknown. In this study, experiments involving specific inhibitors, lentivirus transduction, and small interfering RNA (siRNA) transfection revealed that active PCV3 infection reduced HO-1 expression and that the expression of HO-1 negatively regulated virus replication in cultured cells, depending on its enzymatic activity. Subsequently, the effects of the HO-1 metabolites (CO, BV, and iron) on PCV3 infection were investigated. The CO inducers (cobalt protoporphyrin IX [CoPP] or tricarbonyl dichloro ruthenium [II] dimer [CORM-2]) mediate PCV3 inhibition by generating CO, and this inhibition is reversed by hemoglobin (Hb; a CO scavenger). The inhibition of PCV3 replication by BV depended on BV-mediated reactive oxygen species (ROS) reduction, as N-acetyl-l-cysteine affected PCV3 replication while reducing ROS production. The reduction product of BV, bilirubin (BR), specifically promoted nitric oxide (NO) generation and further activated the cyclic GMP/protein kinase G (cGMP/PKG) pathway to attenuate PCV3 infection. Both the iron provided by FeCl3 and the iron chelated by deferoxamine (DFO) with CoPP treatment failed to affect PCV3 replication. Our data demonstrate that the HO-1-CO-cGMP/PKG, HO-1-BV-ROS, and HO-1-BV-BR-NO-cGMP/PKG pathways contribute crucially to the inhibition of PCV3 replication. These results provide important insights regarding preventing and controlling PCV3 infection. IMPORTANCE The regulation of host protein expression by virus infection is the key to facilitating self-replication. As an important emerging pathogen of swine, clarification of the interaction between PCV3 infection and the host enables us to understand the viral life cycle and pathogenesis better. Heme oxygenase-1 (HO-1) and its metabolites carbon monoxide (CO), biliverdin (BV), and iron have been demonstrated to involve a wealth of viral replications. Here, we, for the first time, demonstrated that HO-1 expression decreases in PCV3-infected cells and negatively regulates PCV3 replication and that the HO-1 metabolic products CO and BV inhibit PCV3 replication by the CO- or BV/BR/NO-dependent cGMP/PKG pathway or BV-mediated ROS reduction, but the iron (the third metabolic product) does not. Specifically, PCV3 infection maintains normal proliferation by downregulating HO-1 expression. These findings clarify the mechanism by which HO-1 modulates PCV3 replication in cells and provide important targets for preventing and controlling PCV3 infection.


Subject(s)
Circovirus , Heme Oxygenase-1 , Swine , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Biliverdine/pharmacology , Carbon Monoxide/metabolism , Circovirus/genetics , Circovirus/metabolism , Reactive Oxygen Species , Antiviral Agents/pharmacology
7.
Viruses ; 15(1)2023 01 14.
Article in English | MEDLINE | ID: mdl-36680281

ABSTRACT

The newly identified porcine Kobuvirus (PKV) has raised concerns owing to its association with diarrheal symptom in pigs worldwide. The process involving the emergence and global spread of PKV remains largely unknown. Here, the origin, genetic diversity, and geographic distribution of PKV were determined based on the available PKV sequence information. PKV might be derived from the rabbit Kobuvirus and sheep were an important intermediate host. The most recent ancestor of PKV could be traced back to 1975. Two major clades are identified, PKVa and PKVb, and recombination events increase PKV genetic diversity. Cross-species transmission of PKV might be linked to interspecies conserved amino acids at 13-17 and 25-40 residue motifs of Kobuvirus VP1 proteins. Phylogeographic analysis showed that Spain was the most likely location of PKV origin, which then spread to pig-rearing countries in Asia, Africa, and Europe. Within China, the Hubei province was identified as a primary hub of PKV, transmitting to the east, southwest, and northeast regions of the country. Taken together, our findings have important implications for understanding the evolutionary origin, genetic recombination, and geographic distribution of PKV thereby facilitating the design of preventive and containment measures to combat PKV infection.


Subject(s)
Kobuvirus , Picornaviridae Infections , Swine Diseases , Swine , Animals , Rabbits , Sheep , Phylogeography , Kobuvirus/genetics , Phylogeny , Picornaviridae Infections/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/diagnosis , Recombination, Genetic
8.
Microbiol Spectr ; 11(1): e0341322, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36537793

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C) is an important pathogen that causes upper respiratory symptoms and egg production decline in turkeys and chickens. aMPV/C infection leads to inhibition of the host antiviral immune response. However, our understanding of the molecular mechanisms underlying host immune response antagonized by aMPV/C infection is limited. In this study, we demonstrated that the aMPV/C phosphoprotein (P) inhibits the IFN antiviral signaling pathway triggered by melanoma differentiation gene 5 (MDA5) and reduces interferon ß (IFN-ß) production and IFN-stimulated genes (ISGs) by targeting IFN regulatory factor 7 (IRF7) but not nuclear factor κB (NF-κB) in DF-1 cells. Moreover, we found that aMPV/C P protein only blocks the nuclear translocation of IRF3 by interacting with IRF3 in HEK-293T cells, instead of affecting IRF3 phosphorylation and inducing IRF3 degradation, which suppresses IRF3 signaling activation and results in a decrease in IFN-ß production. Collectively, these results reveal a novel mechanism by which aMPV/C infection disrupts IFN-ß production in the host. IMPORTANCE The innate immune response is the first defense line of host cells and organisms against viral infections. When RNA viruses infect cells, viral RNA induces activation of retinoic acid-induced gene I and melanoma differentiation gene 5, which initiates downstream molecules and finally produces type I interferon (IFN-I) to regulate antiviral immune responses. The mechanism for avian metapneumovirus (aMPV) modulating IFN-I production to benefit its replication remains unknown. Here, we demonstrate that phosphoprotein of aMPV subgroup C (aMPV/C) selectively inhibits the nuclear translocation of interferon regulatory 3 (IRF3), instead of affecting the expression and phosphorylation of IRF3, which finally downregulates IFN-I production. This study showed a novel mechanism for aMPV/C infection antagonizing the host IFN response.


Subject(s)
Interferon Regulatory Factor-3 , Interferon Type I , Metapneumovirus , Phosphoproteins , Animals , Chickens , Host-Pathogen Interactions , Interferon Regulatory Factor-3/genetics , Interferon Type I/metabolism , Interferon-beta , Metapneumovirus/metabolism , Metapneumovirus/pathogenicity , Phosphoproteins/genetics , Phosphoproteins/metabolism , Viral Proteins/metabolism
9.
J Virol ; 96(24): e0144622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36472440

ABSTRACT

Seneca Valley virus (SVV), a new pathogen resulting in porcine vesicular disease, is prevalent in pig herds worldwide. Although an understanding of SVV biology pathogenesis is crucial for preventing and controlling this disease, the molecular mechanisms for the entry and post-internalization of SVV, which represent crucial steps in viral infection, are not well characterized. In this study, specific inhibitors, Western blotting, and immunofluorescence detection revealed that SVV entry into PK-15 cells depends on low-pH conditions and dynamin. Furthermore, results showed that caveolae-mediated endocytosis (CavME) contributes crucially to the internalization of SVV, as evidenced by cholesterol depletion, downregulation of caveolin-1 expression by small interfering RNA knockdown, and overexpression of a caveolin-1 dominant negative (caveolin-1-DN) in SVV-infected PK-15 cells. However, SVV entry into PK-15 cells did not depend on clathrin-mediated endocytosis (CME). Furthermore, treatment with specific inhibitors demonstrated that SVV entry into PK-15 cells via macropinocytosis depended on the Na+/H+ exchanger (NHE), p21-activated kinase 1 (Pak1), and actin rearrangement, but not phosphatidylinositol 3-kinase (PI3K). Electron microscopy showed that SVV particles or proteins were localized in CavME and macropinocytosis. Finally, knockdown of GTPase Rab5 and Rab7 by siRNA significantly inhibited SVV replication, as determined by measuring viral genome copy numbers, viral protein expression, and viral titers. In this study, our results demonstrated that SVV utilizes caveolae-mediated endocytosis and macropinocytosis to enter PK-15 cells, dependent on low pH, dynamin, Rab5, and Rab7. IMPORTANCE Entry of virus into cells represents the initiation of a successful infection. As an emerging pathogen of porcine vesicular disease, clarification of the process of SVV entry into cells enables us to better understand the viral life cycle and pathogenesis. In this study, patterns of SVV internalization and key factors required were explored. We demonstrated for the first time that SVV entry into PK-15 cells via caveolae-mediated endocytosis and macropinocytosis requires Rab5 and Rab7 and is independent of clathrin-mediated endocytosis, and that low-pH conditions and dynamin are involved in the process of SVV internalization. This information increases our understanding of the patterns in which all members of the family Picornaviridae enter host cells, and provides new insights for preventing and controlling SVV infection.


Subject(s)
Caveolin 1 , Dynamins , Picornaviridae , Virus Internalization , rab5 GTP-Binding Proteins , Animals , Caveolae/metabolism , Caveolin 1/metabolism , Clathrin/metabolism , Dynamins/metabolism , Endocytosis , Picornaviridae/physiology , RNA, Small Interfering/genetics , Swine , Swine Vesicular Disease , rab5 GTP-Binding Proteins/metabolism , Pinocytosis , Cell Line
10.
Viruses ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: mdl-36298827

ABSTRACT

Host-virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein-protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.


Subject(s)
Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Vimentin/metabolism , Vero Cells , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Viral Proteins/metabolism , Coronavirus Infections/metabolism , Antiviral Agents/metabolism , RNA/metabolism , Heat-Shock Proteins/metabolism , Methyltransferases/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , DEAD-box RNA Helicases/metabolism , Ribonucleoproteins/metabolism , Karyopherins/metabolism , Nucleic Acids/metabolism
11.
Viruses ; 14(9)2022 09 10.
Article in English | MEDLINE | ID: mdl-36146809

ABSTRACT

Porcine circovirus type 2 (PCV2) infection can lead to porcine circovirus-associated disease (PCVAD), causing great economic losses to the global swine industry. Conventional vaccination programs are a major measure in the prevention and control of this disease. Currently, there are 5 commercially available PCV2 vaccines in the international market and 10 kinds commercially available PCV2 vaccines in the Chinese market that confer good efficacy against this virus by alleviating clinicopathological manifestations and enhancing growth performance in pigs. In addition, diverse experimental PCV2 vaccines with protective efficiency have been developed, including attenuated chimeric, nucleic acid, subunit, multivalent, and viral-vectored vaccines. These experimental vaccines have been shown to be relatively effective in improving the efficiency of pig production and simplifying prevention procedures. Adjuvants can be used to promote vaccines with higher protective immunity. Herein, we review the application of multiple commercial vaccines over the years and research advances in experimental vaccines, which provide the possibility for the development of superior vaccines to successfully prevent and control PCV2 infection in the future.


Subject(s)
Circoviridae Infections , Circovirus , Nucleic Acids , Swine Diseases , Viral Vaccines , Animals , Antibodies, Viral , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary , Circovirus/genetics , Swine
12.
Viruses ; 14(7)2022 06 27.
Article in English | MEDLINE | ID: mdl-35891383

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C) is highly pathogenic to various avian species with acute respiratory tract clinicopathology and/or drops in egg production. Nucleolin (NCL), an important nucleolar protein, has been shown to regulate multiple viral replication and serve as a functional receptor for viral entry and internalization. Whether NCL is involved in aMPV/C pathogenesis is not known. In this study, we found that aMPV/C infection altered the subcellular localization of NCL in cultured cells. siRNA-targeted NCL resulted in a remarkable decline in aMPV/C replication in Vero cells. DF-1 cells showed a similar response after CRISPR/Cas9-mediated knock out of NCL during aMPV/C infection. Conversely, NCL overexpression significantly increased aMPV/C replication. Pretreatment with AS1411-a aptamer, a guanine (G)-rich oligonucleotide that forms four-stranded structures and competitively binding to NCL, decreased aMPV/C replication and viral titers in cultured cells. Additionally, we found that the aMPV/C fusion (F) protein specifically interacts with NCL through its central domain and that AS1411 disrupts this interaction, thus inhibiting viral replication. Taken together, these results reveal that the aMPV/C F protein interacts with NCL, which is employed by aMPV/C for efficient replication, thereby highlighting the strategic potential for control and therapy of aMPV/C infection.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Poultry Diseases , Animals , Chlorocebus aethiops , Metapneumovirus/genetics , Phosphoproteins , RNA-Binding Proteins , Vero Cells , Virus Replication , Nucleolin
13.
Front Microbiol ; 13: 898212, 2022.
Article in English | MEDLINE | ID: mdl-35663871

ABSTRACT

Porcine circovirus type 3 (PCV3) is a newly identified virus associated with porcine dermatitis and nephropathy syndrome (PDNS) and multisystemic inflammatory responses in pigs. Recent studies suggests that PCV3 originated from bat circoviruses; however, the origin time, mode of spread, and geographic distribution of PCV3 remain unclear. In this study, the evolutionary origin, phylodynamics, and phylogeography of PCV3 were reconstructed based on the available complete genome sequences. PCV3 showed a closer relationship with bird circovirus than with bat circovirus, but their common ancestor was bat circovirus, indicating that birds may be intermediate hosts for the spread of circoviruses in pigs. Using the BEAST and phylogenetic analyses, three different clades of PCV3 (PCV3a, PCV3b, and PCV3c) were identified, with PCV3a being the most prevalent PCV3 clade. Further studies indicated that the earliest origin of PCV3 can be traced back to 1907.53-1923.44, with a substitution rate of 3.104 × 10-4 to 6.8524 × 10-4 substitution/site/year. A phylogeographic analysis highlighted Malaysia as the earliest location of the original PCV3, which migrated to Asia, America, and Europe. Overall, this study provides novel insights into the evolutionary origin, spread mode, and geographic distribution of PCV3, which will facilitate the prevention and control of PCV3 epidemics in the future.

14.
Viruses ; 14(6)2022 06 07.
Article in English | MEDLINE | ID: mdl-35746707

ABSTRACT

Tembusu virus (TMUV) can induce severe egg drop syndrome in ducks, causing significant economic losses. In this study, the possible origin, genomic epidemiology, and transmission dynamics of TMUV were determined. The time to the most recent common ancestor of TMUV was found to be 1924, earlier than that previously reported. The effective population size of TMUV increased rapidly from 2010 to 2013 and was associated with the diversification of different TMUV clusters. TMUV was classified into three clusters (clusters 1, 2, and 3) based on the envelope (E) protein. Subcluster 2.2, within cluster 2, is the most prevalent, and the occurrence of these mutations is accompanied by changes in the virulence and infectivity of the virus. Two positive selections on codons located in the NS3 and NS5 genes (591 of NS3 and 883 of NS5) were identified, which might have caused changes in the ability of the virus to replicate. Based on phylogeographic analysis, Malaysia was the most likely country of origin for TMUV, while Shandong Province was the earliest province of origin in China. This study has important implications for understanding TMUV and provides suggestions for its prevention and control.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Genomics
15.
Viruses ; 14(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35632681

ABSTRACT

An extensive understanding of the interactions between host cellular and viral proteins provides clues for studying novel antiviral strategies. Porcine circovirus type 3 (PCV3) and type 4 (PCV4) have recently been identified as viruses that can potentially damage the swine industry. Herein, 401 putative PCV3 Cap-binding and 484 putative PCV4 Cap-binding proteins were characterized using co-immunoprecipitation and liquid chromatography-mass spectrometry. Both PCV3 and PCV4 Caps shared 278 identical interacting proteins, but some putative interacting proteins (123 for PCV3 Cap and 206 for PCV4 Cap) differed. A protein-protein interaction network was constructed, and according to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, both PCV3 Cap- and PCV4 Cap-binding proteins participated mainly in ribosome biogenesis, nucleic acid binding, and ATP-dependent RNA helicase activities. Verification assays of eight putative interacting proteins indicated that nucleophosmin-1, nucleolin, DEAD-box RNA helicase 21, heterogeneous nuclear ribonucleoprotein A2/B1, YTH N6-methyladenosine RNA binding protein 1, and Y-box binding protein 1 bound directly to both PCV3 and PCV4 Caps, but ring finger protein 2 and signal transducer and activator of transcription 6 did not. Therefore, the interaction network provided helpful information to support further research into the underlying mechanisms of PCV3 and PCV4 infection.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Animals , Capsid , Capsid Proteins/genetics , Circoviridae Infections/veterinary , Circovirus/genetics , Swine
16.
Front Microbiol ; 13: 802740, 2022.
Article in English | MEDLINE | ID: mdl-35283818

ABSTRACT

Porcine circovirus type 4 (PCV4) is a newly emerging pathogen which might be associated with diverse clinical signs, including respiratory and gastrointestinal distress, dermatitis, and various systemic inflammations. The host cellular proteins binding to PCV4 capsid (Cap) protein are still not clear. Herein, we found that the PCV4 Cap mediated translocation of DEAD-box RNA helicase 21 (DDX21) to the cytoplasm from the nucleolus and further verified that the nucleolar localization signal (NoLS) of the PCV4 Cap bound directly to the DDX21. The NoLS of PCV4 Cap and 763GSRSNRFQNK772 residues at the C-terminal domain (CTD) of DDX21 were required for this PCV4 Cap/DDX21 interaction. Further studies indicated that the PCV4 Cap NoLS exploited DDX21 to facilitate its nucleolar localization. In summary, our results firstly demonstrated that DDX21 binds directly to the NoLS of the PCV4 Cap thereby contributing to the nucleolar localization of the PCV4 Cap protein.

17.
Transbound Emerg Dis ; 69(4): e746-e758, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34657384

ABSTRACT

Infectious bursal disease virus (IBDV), an Avibirnavirus, is the pathogen of infectious bursal disease, which is a severely immunosuppressive disease in 3-15-week-old chickens. Different phenotypes of IBDV, including classical, variant, very virulent (vv) and attenuated IBDV, have been reported in many chicken-rearing countries worldwide. Here, we isolated and identified a naturally reassortant and recombinant IBDV (designated GXB02) from 20-day-old chickens with clinicopathological changes of infectious bursal disease (IBD) in Guangxi Province, China. Whole genomic sequencing showed that the strain GXB02 simultaneously has both reassortant and recombinant characteristics with segments A and B being derived from recombinant intermediate vaccine strain and classic strains of IBDV. Segment A of strain GXB02 was incorporated into the skeleton of an intermediate IBDV vaccine strain (W2512), where the breakpoints of two recombinant events located at nucleotide positions 1468 and 1648 were replaced by reassortant vvIBDV (PK2) and vvIBDV (D6948) of segment A, respectively. We used this GXB02 strain to inoculate 21-day-old specific-pathogen-free chickens to evaluate its pathogenicity. Strain GXB02 has clinicopathologic characteristics of IBD with severe bursal lesions, as evidenced by necrosis, depletion of lymphocytes, and follicle atrophy, indicating that reassortment with classical strains in segment B or/and recombination with very virulent strains increased pathogenicity of the strain GXB02 in chickens. These findings provide important insights into the genetic exchange between classic and attenuated strains of IBDV with two recombinant events occurring at the intermediate derivative segment A with vvIBDV strains, thereby increasing the difficulty of prevention and control of IBD due to novel reassortant-recombinant strains.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Birnaviridae Infections/epidemiology , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Chickens , China/epidemiology , Phylogeny , Virulence
18.
Front Microbiol ; 12: 751382, 2021.
Article in English | MEDLINE | ID: mdl-34745055

ABSTRACT

Porcine circovirus type 4 (PCV4) is an emerging etiological agent which was first detected in 2019. The nucleolar localization signal (NoLS) of PCV4 Cap protein and its binding host cellular proteins are still not elucidated. In the present study, we discovered a distinct novel NoLS of PCV4 Cap, which bound to the nucleolar phosphoprotein nucleophosmin-1 (NPM1). The NoLS of PCV4 Cap and serine-48 residue at the N-terminal oligomerization domain of NPM1 were necessary for PCV4 Cap/NPM1 interaction. Furthermore, the charge property of serine residue at position 48 of the NPM1 was crucial for its oligomerization and interaction with PCV4 Cap. In summary, our findings show for the first time that the PCV4 Cap NoLS and the NPM1 oligomerization determine the interaction of Cap/NPM1.

19.
ACS Appl Mater Interfaces ; 11(32): 28752-28761, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31329405

ABSTRACT

Messenger ribonucleic acid (mRNA) plays an important role in various cellular processes. however, traditional techniques cannot realize mRNA detections in live cells as they rely on mRNA purification or cell fixation. To achieve real-time and quantitative mRNA detections at a single live cell level, a single-strand stem-loop-structured ratiometric molecular beacon (RMB) composed of the phosphorothioate-modified loop domain on the 2'-O-methyl RNA backbone with a reporter dye, quencher, and reference dye is proposed to detect the Hsp27 mRNA as a modeled endogenous mRNA. When the RMB hybridizes with the target, the stem-loop structure opens, causing separation of the reporter dye and the quencher and restores the reporter fluorescent signals; therefore, the Hsp27 mRNA can be quantitatively detected according to the ratio of the reporter fluorescent signal to the reference fluorescent signal. Both the phosphorothioate and 2'-O-methyl RNA modifications obviously reduce the nonspecific opening, and the additional reference dye ensures the detection precision using co-localization analysis. Not only does this remove the false-positive signal caused by the nuclease degradation-generated RMB fragment, but it also corrects variations caused by direct measurement of reporter fluorescence intensities at a single cell level owing to inhomogeneity in probe delivery. The designed RMB could detect the Hsp27 mRNA with high signal-to-noise ratio and sensitivity as well as excellent specificity and antidegradation capability proved in vitro and in live cells. Furthermore, it was successfully adopted in subcellular localization, quantitative copy number measurements, and even real-time monitoring of Hsp27 mRNA in live cells, demonstrating that the proposed RMB can be a potential quantitative endogenous mRNA detection tool, especially at a single live cell level.


Subject(s)
Fluorescence , Fluorescent Dyes/chemistry , HSP27 Heat-Shock Proteins/metabolism , RNA, Messenger/metabolism , Animals , Chickens , Chlorocebus aethiops , Nucleic Acid Hybridization , Swine , Vero Cells
20.
J Vet Med Sci ; 76(12): 1631-4, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25649947

ABSTRACT

A real-time PCR for detection and quantification of M. ovipneumoniae was developed using 9 recently sequenced M. ovipneumoniae genomes and primers targeting a putative adhesin gene p113. The assay proved to be specific and sensitive (with a detection limit of 22 genomic DNA) and could quantify M. ovipneumoniae DNA over a wide linear range, from 2.2 × 10(2) to 2.2 × 10(7) genomes.


Subject(s)
Goats/microbiology , Mycoplasma ovipneumoniae/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Animals , Base Sequence , Benzothiazoles , China , Computational Biology , DNA Primers/genetics , Diamines , Genome, Bacterial/genetics , Molecular Sequence Data , Organic Chemicals , Quinolines , Sensitivity and Specificity , Sequence Alignment , Sequence Analysis, DNA/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...